If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2-11=0
a = 20; b = 0; c = -11;
Δ = b2-4ac
Δ = 02-4·20·(-11)
Δ = 880
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{880}=\sqrt{16*55}=\sqrt{16}*\sqrt{55}=4\sqrt{55}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{55}}{2*20}=\frac{0-4\sqrt{55}}{40} =-\frac{4\sqrt{55}}{40} =-\frac{\sqrt{55}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{55}}{2*20}=\frac{0+4\sqrt{55}}{40} =\frac{4\sqrt{55}}{40} =\frac{\sqrt{55}}{10} $
| 8(x+7=18 | | 3x+4=12x+20 | | 9^(2x)=72 | | 3*(4-x)=-24 | | 180+90-2x=150 | | 81=9n+7 | | 1/3(6x+3)+2(x-3)=13 | | 12t=100 | | 3(x1)+2(x-2)=-2 | | 13=4t+3(t+2 | | 37=-3/100x^2+7/5x+18 | | 5/2x=-16 | | 75=75+20t-4.9t^2 | | -3(x-+4)+6=7(x+2)+8 | | 0.5+4=2(b+4) | | F(13)=-3x+7 | | 0=3x^2-18x+29 | | 14+4.5h=2+6h | | 5w+24=2w+3 | | 8y−16=10y−9+6 | | 2y-3=-24-5y | | 12/x+7+3/x=2 | | 82=-8+(-5-4x) | | 3x+2=-2x-3 | | 82=-8+(5-4x) | | 12m+6=30m-6 | | 10(g+50)=2(g+9) | | 4x3(8-5x)=109 | | 0.4x^2-36x+1000=0 | | -11(-x+12)-8x=4(-12+X) | | -7=-4x2-7x+4 | | x^2-90x+2500=0 |